SiGe High-Linearity, 815MHz to 995MHz Downconversion Mixer with LO Buffer/Switch

Abstract

General Description The MAX9986 high-linearity downconversion mixer provides 10dB gain, +23.6dBm IIP3, and 9.3dB NF for 815 MHz to 995 MHz base-station receiver applications. With a 960 MHz to 1180 MHz LO frequency range, this particular mixer is ideal for high-side LO injection receiver architectures. Low-side LO injection is supported by the MAX9984, which is pin-for-pin and functionally compatible with the MAX9986. In addition to offering excellent linearity and noise performance, the MAX9986 also yields a high level of component integration. This device includes a double-balanced passive mixer core, an IF amplifier, a dual-input LO selectable switch, and an LO buffer. On-chip baluns are also integrated to allow for single-ended RF and LO inputs. The MAX9986 requires a nominal LO drive of OdBm, and supply current is guaranteed to be below 265 mA . The MAX9984/MAX9986 are pin compatible with the MAX9994/MAX9996 1700MHz to 2200 MHz mixers, making this entire family of downconverters ideal for applications where a common PC board layout is used for both frequency bands. The MAX9986 is also functionally compatible with the MAX9993. The MAX9986 is available in a compact, 20-pin, thin QFN package ($5 \mathrm{~mm} \times 5 \mathrm{~mm}$) with an exposed paddle. Electrical performance is guaranteed over the extended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Applications
850MHz W-CDMA Base Stations
GSM 850/GSM 900 2G and 2.5G EDGE Base Stations
cdmaOne ${ }^{\text {TM }}$ and cdma2000 ${ }^{\circledR}$ Base Stations
iDEN ${ }^{\circledR}$ Base Stations
Predistortion Receivers
Fixed Broadband Wireless Access
Wireless Local Loop
Private Mobile Radios
Military Systems
Microwave Links
Digital and Spread-Spectrum Communication Systems
cdma2000 is a registered trademark of the Telecommunications Industry Association.
cdmaOne is a trademark of CDMA Development Group.
iDEN is a registered trademark of Motorola, Inc.

Features
815MHz to 995MHz RF Frequency Range
960MHz to 1180MHz LO Frequency Range
(MAX9986)
570MHz to 850MHz LO Frequency Range
(MAX9984)
50MHz to 250MHz IF Frequency Range
10dB Conversion Gain
+23.6dBm Input IP3
+12dBm Input 1dB Compression Point
9.3dB Noise Figure
67dBc 2LO-2RF Spurious Rejection at
PrF = -10dBm
Integrated LO Buffer
Integrated RF and LO Baluns for Single-Ended
Inputs
Low -3dBm to +3dBm LO Drive
Built-In SPDT LO Switch with 49dB LO1 to LO2
Isolation and 50ns Switching Time
Pin Compatible with MAX9994/MAX9996 1700MHz
to 2200MHz Mixers
Functionally Compatible with MAX9993
External Current-Setting Resistors Provide Option
for Operating Mixer in Reduced Power/Reduced
Performance Mode
Lead-Free Package Available

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE	PKG CODE
MAX9986ETP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Thin QFN-EP* $5 \mathrm{~mm} \times 5 \mathrm{~mm}$	T2055-3
MAX9986ETP-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Thin QFN-EP* $5 \mathrm{~mm} \times 5 \mathrm{~mm}$	T2055-3
MAX9986ETP+D	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Thin QFN-EP* $5 \mathrm{~mm} \times 5 \mathrm{~mm}$	T2055-3
MAX9986ETP+TD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Thin QFN-EP* $5 \mathrm{~mm} \times 5 \mathrm{~mm}$	T2055-3

*EP = Exposed paddle.
$+=$ Lead free. $\mathrm{D}=$ Dry pack. $\mathrm{T}=$ Tape-and-reel.

Pin Configuration/Functional Diagram and Typical Application Circuit appear at end of data sheet.

SiGe High-Linearity, 815MHz to 995MHz Downconversion Mixer with LO Buffer/Switch

ABSOLUTE MAXIMUM RATINGS

Vcc to GND
-0.3V to +5.5 V
IF+, IF-, LOBIAS, LOSEL, IFBIAS to GND...-0.3V to (VCC + 0.3V)
TAP.
. -0.3 V to +1.4 V
LO1, LO2, LEXT to GND. \qquad -0.3 V to +0.3 V
RF, LO1, LO2 Input Power
\qquad RF (RF is DC shorted to GND through a balun) \qquad Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
20-Pin Thin QFN-EP (derate $26.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$). \qquad ..2.1W

ӨJA ... $+38^{\circ} \mathrm{C} / \mathrm{W}$
Өлс .. $+13^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature Range (Note A) $\mathrm{T} \mathrm{C}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature .. $150^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Note A: Tc is the temperature on the exposed paddle of the package.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

(MAX9986 Typical Application Circuit, $\mathrm{VCC}=+4.75 \mathrm{~V}$ to +5.25 V , no RF signal applied, IF+ and IF- outputs pulled up to V_{CC} through inductive chokes, $\mathrm{R}_{1}=953 \Omega, \mathrm{R}_{2}=619 \Omega, \mathrm{~T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=$ $+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX
UNITS					
Supply VoItage	V_{CC}		4.75	5.00	5.25
Supply Current	$\mathrm{I} C \mathrm{C}$		V		
LO_SEL Input-Logic Low	V_{IL}			222	265
LO_SEL Input-Logic High	V_{IH}		2	mA	

AC ELECTRICAL CHARACTERISTICS

(MAX9986 Typical Application Circuit, $\mathrm{V} C \mathrm{C}=+4.75 \mathrm{~V}$ to +5.25 V , RF and LO ports are driven from 50Ω sources, $\mathrm{PLO}=-3 \mathrm{dBm}$ to $+3 \mathrm{dBm}, \mathrm{P}_{\mathrm{RF}}=-5 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=815 \mathrm{MHz}$ to $995 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=960 \mathrm{MHz}$ to $1180 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=160 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}>\mathrm{f}_{\mathrm{RF}}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{VCC}=+5 \mathrm{~V}, \mathrm{PRF}=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{fRF}_{\mathrm{RF}}=910 \mathrm{MHz}, \mathrm{fLO}=1070 \mathrm{MHz}, \mathrm{fIF}=160 \mathrm{MHz}, \mathrm{Tc}=$ $+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
RF Frequency Range	fRF	(Note 2)	815		995	MHz
LO Frequency Range	flo	(Note 2)	960		1180	MHz
		MAX9984	570		850	
IF Frequency Range	fiF	(Note 2)	50		250	MHz
Conversion Gain	Gc	$\mathrm{T}^{\mathrm{C}}=+25^{\circ} \mathrm{C}$	9	10	11	dB
Gain Variation Over Temperature		$\mathrm{T}^{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		-0.007		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Conversion Gain Flatness		Flatness over any one of three frequency bands: $\begin{aligned} & \mathrm{f}_{\mathrm{RF}}=824 \mathrm{MHz} \text { to } 849 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{RF}}=869 \mathrm{MHz} \text { to } 894 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{RF}}=880 \mathrm{MHz} \text { to } 915 \mathrm{MHz} \end{aligned}$		± 0.15		dB
Input Compression Point	$\mathrm{P}_{1 \mathrm{~dB}}$	(Note 3)		12		dBm
Input Third-Order Intercept Point	IIP3	Two tones: $\mathrm{f}_{\mathrm{RF} 1}=910 \mathrm{MHz}, \mathrm{f}_{\mathrm{RF}}=911 \mathrm{MHz}$, $P_{\text {RF }}=-5 \mathrm{dBm} /$ tone, $\mathrm{fLO}=1070 \mathrm{MHz}$, PLO $=0 \mathrm{dBm}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	21	23.6		dBm
Input IP3 Variation Over Temperature		$\mathrm{T}^{\mathrm{C}}=+25^{\circ} \mathrm{C}$ to $-40^{\circ} \mathrm{C}$		-1.7		dB
		$\mathrm{T}^{\text {C }}=+25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		+1.0		

SiGe High-Linearity, 815MHz to 995MHz Downconversion Mixer with LO Buffer/Switch

AC ELECTRICAL CHARACTERISTICS (continued)

(MAX9986 Typical Application Circuit, Vcc $=+4.75 \mathrm{~V}$ to +5.25 V , RF and LO ports are driven from 50Ω sources, $\mathrm{PLO}=-3 \mathrm{dBm}$ to $+3 \mathrm{dBm}, \mathrm{P}_{\mathrm{RF}}=-5 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=815 \mathrm{MHz}$ to $995 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=960 \mathrm{MHz}$ to $1180 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=160 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}>\mathrm{f}_{\mathrm{RF}}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{P}_{\mathrm{RF}}=-5 \mathrm{dBm}, \mathrm{PLO}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=910 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=1070 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=160 \mathrm{MHz}, \mathrm{T}_{\mathrm{C}}=$ $+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Noise Figure	NF	Single sideband, $\mathrm{f}_{\mathrm{I}} \mathrm{F}=190 \mathrm{MHz}$			9.3		dB
Noise Figure Under-Blocking		$\begin{aligned} & \text { fRF }=900 \mathrm{MHz}(\text { no signal }) \\ & \text { fLO }=1090 \mathrm{MHz} \\ & \mathrm{fBLOCKER}=990 \mathrm{MHz} \\ & \mathrm{fIF}_{\mathrm{IF}}=190 \mathrm{MHz} \\ & (\text { Note } 4) \end{aligned}$	Pblocker = $+8 \mathrm{dBm}$		19		
			$\begin{aligned} & \text { PBLOCKER = } \\ & +11 \mathrm{dBm} \end{aligned}$		24		
Small-Signal Compression Under-Blocking Condition		PFUNDAMENTAL $=-5 \mathrm{dBm}$ ffundamental $=910 \mathrm{MHz}$ $\mathrm{f}_{\mathrm{BLOCK}} \mathrm{CR}=911 \mathrm{MHz}$	$\begin{aligned} & \text { PBLOCKER = } \\ & +8 \mathrm{dBm} \end{aligned}$		0.3		dB
			$\begin{aligned} & \text { PBLOCKER = } \\ & +11 \mathrm{dBm} \end{aligned}$		2		
LO Drive				-3		+3	dBm
Spurious Response at IF	2×2	2LO-2RF	$P_{\text {RF }}=-10 \mathrm{dBm}$		67		dBc
			$\mathrm{P}_{\mathrm{RF}}=-5 \mathrm{dBm}$		62		
	3×3	3LO-3RF	$P_{\text {RF }}=-10 \mathrm{dBm}$		87		
			$\mathrm{P}_{\mathrm{RF}}=-5 \mathrm{dBm}$		77		
LO1 to LO2 Isolation		$\begin{aligned} & \text { PLO }=+3 \mathrm{dBm} \\ & \mathrm{TC}=+25^{\circ} \mathrm{C}(\text { Note } 5) \end{aligned}$	LO2 selected	42	49		dB
			LO1 selected	42	50		
LO Leakage at RF Port		PLO $=+3 \mathrm{dBm}$			-47		dBm
LO Leakage at IF Port		$\mathrm{PLO}=+3 \mathrm{dBm}$			-30		dBm
RF-to-IF Isolation					46		dB
LO Switching Time		50% of LOSEL to IF settled to within 2°			50		ns
RF Port Return Loss					20		dB
LO Port Return Loss		LO1/2 port selected, LO2/1 and IF terminated			27		dB
		LO1/2 port unselected, LO2/1 and IF terminated			26		
IF Port Return Loss		LO driven at $0 \mathrm{dBm}, \mathrm{RF}$ terminated into 50Ω, differential 200Ω			22		dB

Note 1: All limits include external component losses. Output measurements taken at IF output of the Typical Application Circuit.
Note 2: Operation outside this range is possible, but with degraded performance of some parameters.
Note 3: Compression point characterized. It is advisable not to operate continuously the mixer RF input above +12 dBm .
Note 4: Measured with external LO source noise filtered so the noise floor is $-174 \mathrm{dBm} / \mathrm{Hz}$. This specification reflects the effects of all SNR degradations in the mixer, including the LO noise as defined in Maxim Application Note 2021
Note 5: Guaranteed by design and characterization.

SiGe High-Linearity, 815MHz to 995MHz Downconversion Mixer with LO Buffer/Switch

(MAX9986 Typical Application Circuit, $\mathrm{V} \mathrm{CC}=+5.0 \mathrm{~V}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{PRF}_{\mathrm{RF}}=-5 \mathrm{dBm}, \mathrm{f}_{\mathrm{LO}}>\mathrm{f}_{\mathrm{RF}}, \mathrm{f}_{\mathrm{IF}}=160 \mathrm{MHz}$, unless otherwise noted.)

SiGe High-Linearity, 815MHz to 995MHz Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics (continued)

(MAX9986 Typical Application Circuit, $\mathrm{V} \mathrm{CC}=+5.0 \mathrm{~V}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{PRF}=-5 \mathrm{dBm}, \mathrm{f}_{\mathrm{LO}}>\mathrm{f}_{\mathrm{RF}}, \mathrm{f}_{\mathrm{IF}}=160 \mathrm{MHz}$, unless otherwise noted.)

3LO-3RF RESPONSE vs. RF FREQUENCY

INPUT $P_{1 d B}$ vs. RF FREQUENCY

SiGe High-Linearity, 815MHz to 995MHz Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics (continued)
(MAX9986 Typical Application Circuit, $\mathrm{V} \mathrm{CC}=+5.0 \mathrm{~V}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{P}_{\mathrm{RF}}=-5 \mathrm{dBm}, \mathrm{f}_{\mathrm{LO}}>\mathrm{f}_{\mathrm{RF}}, \mathrm{f}_{\mathrm{IF}}=160 \mathrm{MHz}$, unless otherwise noted.)

lo leakage at if port
vs. 10 FREQUENCY

LO LEAKAGE AT RF PORT
vs. LO FREQUENCY

SiGe High-Linearity, 815MHz to 995MHz Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics (continued)

(MAX9986 Typical Application Circuit, V CC $=+5.0 \mathrm{~V}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{PRF}=-5 \mathrm{dBm}, \mathrm{f}_{\mathrm{LO}}>\mathrm{f}_{\mathrm{RF}}, \mathrm{f}_{\mathrm{IF}}=160 \mathrm{MHz}$, unless otherwise noted.)

RF PORT RETURN LOSS
vs. RF FREQUENCY

IF PORT RETURN LOSS
vs. IF FREQUENCY

LO SELECTED RETURN LOSS
vs. LO FREQUENCY

SUPPLY CURRENT
vs. TEMPERATURE (Tc)

SiGe High-Linearity, 815MHz to 995MHz Downconversion Mixer with LO Buffer/Switch

Pin Description

PIN	NAME	FUNCTION
$1,6,8,14$	VCC	Power-Supply Connection. Bypass each VCC pin to GND with capacitors as shown in the Typical Application Circuit.
2	RF	Single-Ended 50Ω RF Input. This port is internally matched and DC shorted to GND through a balun. Requires an external DC-blocking capacitor.
3	TAP	Center Tap of the Internal RF Balun. Bypass to GND with capacitors close to the IC, as shown in the Typical Application Circuit.
$4,5,10,12$, 13,17	GND	Ground
7	LOBIAS	Bias Resistor for Internal LO Buffer. Connect a 619 $\Omega \pm 1 \%$ resistor from LOBIAS to the power supply.
9	LOSEL	Local Oscillator Select. Logic control input for selecting LO1 or LO2.
11	LO1	Local Oscillator Input 1. Drive LOSEL low to select LO1.
15	LO2	Local Oscillator Input 2. Drive LOSEL high to select LO2.
16	LEXT	External Inductor Connection. Connect a low-ESR, 30nH inductor from LEXT to GND. This inductor carries approximately 140mA DC current.
18,19	IF-, IF+	Differential IF Outputs. Each output requires external bias to VCc through an RF choke (see the Typical Application Circuit).
20	IFBIAS	IF Bias Resistor Connection for IF Amplifier. Connect a 953 $\pm \pm 1 \%$ resistor from IFBIAS to GND.
EP	GND	Exposed Ground Paddle. Solder the exposed paddle to the ground plane using multiple vias.

Detailed Description

The MAX9986 high-linearity downconversion mixer provides 10 dB of conversion gain and +23.6 dBm of IIP3, with a typical 9.3dB noise figure. The integrated baluns and matching circuitry allow for 50Ω singleended interfaces to the RF and the two LO ports. A sin-gle-pole, double-throw (SPDT) switch provides 50ns switching time between the two LO inputs with 49dB of LO-to-LO isolation. Furthermore, the integrated LO buffer provides a high drive level to the mixer core, reducing the LO drive required at the MAX9986's inputs to a -3 dBm to +3 dBm range. The IF port incorporates a differential output, which is ideal for providing enhanced IIP2 performance.
Specifications are guaranteed over broad frequency ranges to allow for use in cellular band GSM, cdma2000, iDEN, and W-CDMA 2G/2.5G/3G base stations. The MAX9986 is specified to operate over a 815 MHz to 995 MHz RF frequency range, a 960 MHz to 1180 MHz LO frequency range, and a 50 MHz to 250 MHz IF frequency range. Operation beyond these ranges is possible; see the Typical Operating Characteristics for additional details.

RF Input and Balun
The MAX9986 RF input is internally matched to 50Ω, requiring no external matching components. A DCblocking capacitor is required because the input is internally DC shorted to ground through the on-chip balun.

LO Inputs, Buffer, and Balun

The MAX9986 is ideally suited for high-side LO injection applications with a 960 MHz to 1180 MHz LO frequency range. For a device with a 570 MHz to 850 MHz LO frequency range, refer to the MAX9984 data sheet. As an added feature, the MAX9986 includes an internal LO SPDT switch that can be used for frequency-hopping applications. The switch selects one of the two single-ended LO ports, allowing the external oscillator to settle on a particular frequency before it is switched in. LO switching time is typically less than 50 ns , which is more than adequate for virtually all GSM applications. If frequency hopping is not employed, set the switch to either of the LO inputs. The switch is controlled by a digital input (LOSEL): logic-high selects LO2, logic-low selects LO1. To avoid damage to the part, voltage must be applied to Vcc before digital logic is applied to LOSEL. LO1 and LO2 inputs are internally matched to 50Ω, requiring only a 82 pF DCblocking capacitor.

SiGe High-Linearity, 815MHz to 995MHz Downconversion Mixer with LO Buffer/Switch

A two-stage internal LO buffer allows a wide input power range for the LO drive. All guaranteed specifications are for an LO signal power from -3 dBm to +3 dBm . The on-chip low-loss balun, along with an LO buffer, drives the double-balanced mixer. All interfacing and matching components from the LO inputs to the IF outputs are integrated on-chip.

High-Linearity Mixer

The core of the MAX9986 is a double-balanced, highperformance passive mixer. Exceptional linearity is provided by the large LO swing from the on-chip LO buffer. When combined with the integrated IF amplifiers, the cascaded IIP3, 2LO-2RF rejection, and NF performance is typically $23.6 \mathrm{dBm}, 67 \mathrm{dBc}$, and 9.3 dB , respectively.

Differential IF Output Amplifier

 The MAX9986 mixer has a 50 MHz to 250 MHz IF frequency range. The differential, open-collector IF output ports require external pullup inductors to VCc. Note that these differential outputs are ideal for providing enhanced 2LO-2RF rejection performance. Singleended IF applications require a $4: 1$ balun to transform the 200Ω differential output impedance to a 50Ω singleended output.
Applications Information

Input and Output Matching

The RF and LO inputs are internally matched to 50Ω. No matching components are required. RF and LO inputs require only DC-blocking capacitors for interfacing.
The IF output impedance is 200Ω (differential). For evaluation, an external low-loss 4:1 (impedance ratio) balun transforms this impedance down to a 50Ω singleended output (see the Typical Application Circuit).

Bias Resistors

Bias currents for the LO buffer and the IF amplifier are optimized by fine tuning resistors R1 and R2. If reduced current is required at the expense of performance, contact the factory for details. If the $\pm 1 \%$ bias resistor values are not readily available, substitute standard $\pm 5 \%$ values.

LEXT Inductor

LEXT serves to improve the LO-to-IF and RF-to-IF leakage. The inductance value can be adjusted by the user to
optimize the performance for a particular frequency band. Since approximately 140 mA flows through this inductor, it is important to use a low-DCR wire-wound coil.
If the LO-to-IF and RF-to-IF leakage are not critical parameters, the inductor can be replaced by a short circuit to ground.

Layout Considerations

 A properly designed PC board is an essential part of any RF/microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. For the best performance, route the ground pin traces directly to the exposed pad under the package. The PC board exposed pad MUST be connected to the ground plane of the PC board. It is suggested that multiple vias be used to connect this pad to the lower level ground planes. This method provides a good RF/thermal conduction path for the device. Solder the exposed pad on the bottom of the device package to the PC board. The MAX9986 Evaluation Kit can be used as a reference for board layout. Gerber files are available upon request at www.maxim-ic.com.
Power-Supply Bypassing

Proper voltage-supply bypassing is essential for highfrequency circuit stability. Bypass each VCc pin and TAP with the capacitors shown in the Typical Application Circuit; see Table 1. Place the TAP bypass capacitor to ground within 100 mils of the TAP pin.

Exposed Pad RF/Thermal Considerations The exposed paddle (EP) of the MAX9986's 20-pin thin QFN-EP package provides a low thermal-resistance path to the die. It is important that the PC board on which the MAX9986 is mounted be designed to conduct heat from the EP. In addition, provide the EP with a low-inductance path to electrical ground. The EP MUST be soldered to a ground plane on the PC board, either directly or through an array of plated via holes.

Chip Information

TRANSISTOR COUNT: 1017
PROCESS: SiGe BiCMOS

SiGe High-Linearity, 815MHz to 995MHz Downconversion Mixer with LO Buffer/Switch

Table 1. Component List Referring to the Typical Application Circuit

COMPONENT	VALUE	DESCRIPTION
L1, L2	330 nH	Wire-wound high-Q inductors (0805)
L3	30 nH	Wire-wound high-Q inductor (0603)
C1	10 pF	Microwave capacitor (0603)
C2, C4, C7, C8, C10, C11, C12	82 pF	Microwave capacitors (0603)
C3, C5, C6, C9, C13, C14	$0.01 \mu \mathrm{~F}$	Microwave capacitors (0603)
C15	220 pF	Microwave capacitor (0402)
R1	953Ω	$\pm 1 \%$ resistor (0603)
R2	619Ω	$\pm 1 \%$ resistor (0603)
R3	3.57Ω	$\pm 1 \%$ resistor (1206)
T1	$4: 1$ balun	IF balun
U1	MAX9986	Maxim IC

Pin Configuration/Functional Diagram

THIN QFN

SiGe High-Linearity, $\mathbf{8 1 5 M H z}$ to 995 MHz Downconversion Mixer with LO Buffer/Switch

Typical Application Circuit

SiGe High-Linearity, 815MHz to 995MHz Downconversion Mixer with LO Buffer/Switch

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

